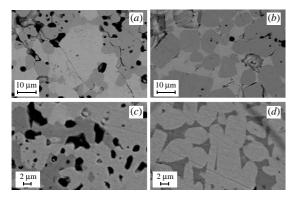
Microstructure and conductivity evolution in Bi_2CuO_4 – Bi_2O_3 and Bi_2MoO_6 – $Bi_2Mo_2O_9$ oxide composites nearby eutectic temperatures

Nikolay V. Lyskov,*a Yuri G. Metlin,b Daria V. Vinogradovab and Yuri D. Tretyakovab


^a Department of Materials Science, M. V. Lomonosov Moscow State University, 119992 Moscow, Russian Federation. Fax: +7 095 939 0998; e-mail: lyskov@inorg.chem.msu.ru

DOI: 10.1070/MC2004v014n04ABEH001965

The enhance of electrical conductivity at the eutectic temperature was attended with a thermally reversible microstructural change of composites, expressed by redistribution of an eutectic liquid between triple grain junctions (at cooling) and grain boundaries (at heating).

Inorganic materials with mixed ionic and electronic conductivity are of interest because of their applications in non-polluting electrochemical devices, membranes for oxygen separation and conversion of methane in syngas. 1-3 The combining of two phases, one of which has electronic conductivity, while the other is an ionic conductor, is an advantageous approach. Our research is concerned with Bi₂CuO₄-Bi₂O₃ and Bi₂MoO₆-Bi₂Mo₂O₉ ceramic composites. At the eutectic temperature, these compounds form composite structures consisted of grains (with electron-ionic conductivity) and liquid channels (with high ionic conductivity) located at the grain boundaries. In this work, the microstructure evolution and the electrical conductivity of composites were examined in order to reveal the processes that take place nearby the eutectic temperature.

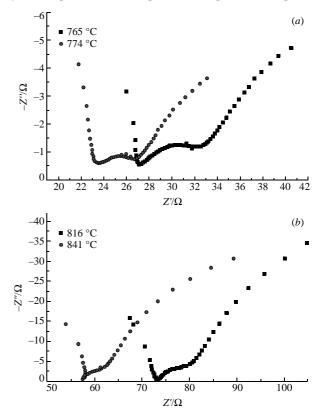
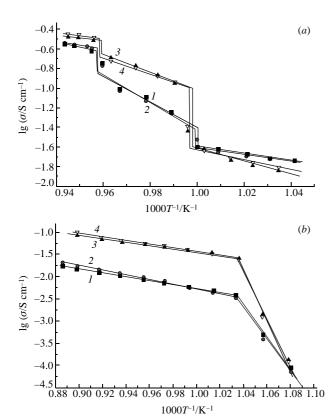

The $Bi_2CuO_4 + (12 \text{ and } 23) \text{ mol}\%$ Bi_2O_3 and $Bi_2MoO_6 +$ (8 and 22) mol% MoO₃ composites were prepared from Bi₂CuO₄, Bi₂O₃, Bi₂MoO₆ and MoO₃ powders using a conventional ceramic technique. Bi₂CuO₄ and Bi₂MoO₆ were synthesised by solid-state reactions using Bi₂O₃, MoO₃ and CuO (reactive grade) as initial reagents. The sintering was carried out for 30 h in air at 700 °C for Bi₂CuO₄ and at 600 °C for Bi₂MoO₆. The formation of single-phase Bi₂CuO₄ and Bi₂MoO₆ powders was confirmed by X-ray powder diffraction. Then, the powders of Bi₂CuO₄ and Bi₂MoO₆ were mechanically mixed with Bi₂O₃ and MoO₃ and thoroughly reground in an agate mortar in acetone for 1 h. In order to increase the density of composite ceramics, polyvinyl alcohol was added to the oxide mixtures. After that, the mixtures were compacted into rectangular bars $(4\times10\times2 \text{ mm})$ at a uniaxial pressure of about 3000 kg cm⁻². The sintering of Bi₂CuO₄-Bi₂Ō₃ and Bi₂MoO₆-Bi₂Mo₂O₉ composites was carried out in air for 10 h at 700 and 630 °C, respectively. The densities of the $Bi_2CuO_4 + (12 \text{ and } 23) \text{ mol}\%$ Bi₂O₃ composites were 6.60 and 6.90 g cm⁻³, respectively, whereas the densities of $Bi_2MoO_6 + (8 \text{ and } 22) \text{ mol}\% MoO_3$ were 6.00 g cm⁻³ and 5.82 g cm⁻³, respectively.

Figure 1 SEM micrographs of a $\rm Bi_2CuO_4 + 23~mol\%~Bi_2O_3$ composite after quenching from (a) 770 and (b) 775 °C (dark, light and black areas correspond to $\rm Bi_2CuO_4$, $\rm Bi_2O_3$ and pores, respectively) and a $\rm Bi_2MoO_6 + 22~mol\%~MoO_3$ composite after quenching from (c) 670 and (d) 690 °C (light, dark and black areas correspond to $\rm Bi_2MoO_6$, $\rm Bi_2Mo_2O_9$ and pores, respectively).


To study the microstructure evolution in Bi₂CuO₄-Bi₂O₃ and Bi_2MoO_6 – $Bi_2Mo_2O_9$ systems nearby the eutectic temperatures (7704 and 682 °C,5 respectively), the ceramic samples were rapidly heated to temperatures below and above the eutectic point and immediately quenched in air. The polished cross-sections of ceramic composites were studied by scanning electron microscopy (LEO Supra 50VP). The microstructure of Bi₂CuO₄– Bi₂O₃ composites quenched from temperatures below the eutectic point is characterised by a random distribution of Bi₂O₃ over the ceramic bulk. However, another situation was observed in the samples quenched from temperatures slightly above the eutectic temperature. Bi₂O₃ is localised at triple grain junctions and some grain boundaries of Bi₂CuO₄. Figure 1(a),(b) shows the SEM micrographs, which illustrate the redistribution of Bi₂O₃ in the Bi₂CuO₄-Bi₂O₃ composite. A similar situation was observed in the Bi₂MoO₆-Bi₂Mo₂O₉ system, where a $\text{Bi}_2\text{Mo}_2\text{O}_9$ phase redistributes over the composite [Figure 1(c),(d)]. This evolution in the location of a minor phase is most likely caused by grain boundaries wetting and liquid channel structure formation.

The conductivity vs. temperature measurements of Bi₂CuO₄–Bi₂O₃ and Bi₂MoO₆–Bi₂Mo₂O₉ composites were performed by a four-point DC technique and two-point AC impedance

Figure 2 Impedance spectra of (a) $Bi_2CuO_4 + 23 \text{ mol}\%$ Bi_2O_3 and (b) $Bi_2MoO_6 + 22 \text{ mol}\%$ MoO_3 composites.

^b Department of Chemistry, M. V. Lomonosov Moscow State University, 119992 Moscow, Russian Federation

Figure 3 Total conductivity of Bi₂CuO₄–Bi₂O₃ and Bi₂MoO₆–Bi₂Mo₂O₉ composites obtained by (1, 3) a four-point DC technique and (2, 4) twopoint AC impedance spectroscopy: (a) Bi₂CuO₄ + 12 mol% Bi₂O₃ (1, 2) and Bi₂CuO₄ + 23 mol% Bi₂O₃ (3, 4) composites; (b) Bi₂MoO₆ + 8 mol% MoO₃ (1, 2) and Bi₂MoO₆ + 22 mol% MoO₃ (3, 4).

spectroscopy in air using the rectangular bars of samples. The DC measurements were carried out on a Solatron SI 1287 potentiostate/galvanostate in a potentiostatic mode. The AC impedance measurements were made using a Solatron SI 1255B frequency response analyser in the frequency range 1 Hz-1 MHz at a signal voltage of 100 mV.

To study the conductivity, the impedance spectra of Bi₂CuO₄-Bi₂O₃ and Bi₂MoO₆–Bi₂Mo₂O₉ composites were measured as a function of frequency, and the results were plotted on a complex plane (Figure 2). We found that the spectra exhibit three semicircles. The high frequency semicircle is attributed to the grain interior. It overlaps with the grain boundary semicircle in G. A. Tompsett, C. Finnerty, K. Kendall, T. Alston and N. M. Sammes, the mid-frequency range. Finally, the beginning of the third semicircle attributed to the Pt electrode signal becomes visible at the low frequency end.

The results of electrical conductivity measurements in do 5 Bi₂CuO₄–Bi₂O₃ and Bi₂MoO₆–Bi₂Mo₂O₉ composites are shown in Figure 3. In order to demonstrate that the conductivity varia-

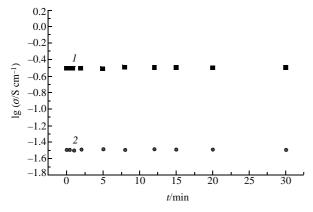


Figure 4 Conductivity vs. time for (1) $Bi_2CuO_4 + 23 \text{ mol}\%$ Bi_2O_3 at 773 °C and (2) Bi_2MoO_6 + 22 mol% MoO_3 at 714 °C (four-point DC technique).

tions cannot be attributed to possible chemical reactions, we present one plot with the conductivity-time relationships for $Bi_2CuO_4 + 23 \text{ mol}\% Bi_2O_3 \text{ at 773 °C and } Bi_2MoO_6 + 22 \text{ mol}\%$ MoO₃ at 714 °C (Figure 4). One can see that the conductivity variations are negligible, and they cannot be a result of possible chemical reactions with other materials (e.g., crucibles, holders for conductivity measurements, etc.).

The data obtained by a four-point DC technique and twopoint AC impedance spectroscopy are in good agreement with each other. The temperature dependence of conductivity exhibits a thermally activated behaviour. The conductivities of Bi₂CuO₄- Bi_2O_3 composites [Figure 3(a)] in the temperature range 690-730 °C are similar because the main contribution to the total conductivity is given by the electronic conductivity of Bi_2CuO_4 .6 In the temperature range 730–770 °C, where δ - Bi_2O_3 modification exists, the contribution of oxygen-ion conductivity to the total conductivity becomes considerable,7 and the conductivity of composites increases. Finally, in the temperature range 770-790 °C, the conductivity increases due to eutectic liquid occurrence and liquid channel structure formation. The two jumps on the curve of conductivity vs. temperature at about 730 and 770 °C can be explained as described below. The first is caused by the $\alpha \rightarrow \delta \operatorname{Bi}_2 \operatorname{O}_3$ polymorphic transition accompanied by a sharp increase in the oxygen ion conductivity.⁷ The second is caused by grain boundary wetting by an eutectic liquid.

The conductivity of Bi₂MoO₆–Bi₂Mo₂O₉ composites [Figure 3(b)] above the eutectic point (682 $^{\circ}$ C) is several times higher than the conductivity of solid-state composites before liquid channel structure formation. This is caused by liquid phase formation, as well as by the appearance of high-temperature γ-Bi₂MoO₆ modification, which has a high oxygen-ion conductivity.8 The enhanced conductivity of the composite with a higher MoO₃ content resulted from a larger amount of liquid phase at the eutectic temperature.

Thus, the conductivity jump observed in Bi₂CuO₄–Bi₂O₃ and break in Bi₂MoO₆-Bi₂Mo₂O₉ composite at the eutectic temperature supports the processes of grain boundary wetting and liquid channel structure formation. These processes are advantageous and enhance the electrical conductivity of materials with mixed electron-ionic conductivity.

This work was supported by the Russian Foundation for Basic Research (grant no. 04-03-32701a).

References

- 1 B. B. Owens, J. Power Sources, 2000, 90, 2.
- 2 B. A. Boukamp, *Nature Materials*, 2003, **2**, 294.
 - J. Power Sources, 2000, 86, 376.
 - 4 B. Hallstedt, D. Risold and L. J. Gauckler, J. Am. Ceram. Soc., 1996, 79,
 - C. Tu and G. S. Smith, J. Solid State Chem., 1975, 13, 288.
- V. V. Kharton, A. V. Nikolaev, E. N. Naumovich and A. A. Vecher, Solid State Ionics, 1995, 81, 201.
- P. Shuk, H.-D. Wiemhofer, U. Guth, W. Gopel and M. Greenblatt, Solid State Ionics, 1996, 89, 179.
- 8 L. T. Sim, C. K. Lee and A. R. West, J. Mater. Chem., 2002, 12, 17.

Received: 4th June 2004; Com. 04/2290